HACETTEPE UNIVERSITY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING ELE 401-402 GRADUATION PROJECT LOW COST AUDIO FREQUENCY SIGNAL GENERATOR FOR **LAB-AT-HOME ELECTRONICS EXPERIMENTS**

lsıknaz Güler Supervisor: Prof. Dr. Uğur Baysal

Introduction

- Signal generators run over the audio range, typically from about 20 Hz to 20 kHz, and are often used as sine wave generators.
- They are often used in audio measurements of frequency response and for distortion measurements.
- As a result they must have a very flat response and also very low levels of harmonic distortion.
- The purpose of this project is to make low cost battery operated audio signal generator for lab at home.

Application Areas

Application areas are to generate sinus, triangular square and sawtooth signals from battery powered, affordable audio frequency signal generator in experiments done in home environment.

<u>_____</u>____

Results and Discussion

Specifications and Design Requirements

The components used in the system and their features are as follows:

- Microcontroller : Arduino NANO(Atmega328p)
- Power Supply : 9V Battery
- Communication Protocol : I2C(Inter-Integrated Circuit)
- Screen:2x16 LCD Display
- Easy to use, compact and portable

Solution Methodology

Using the signal generator application installed on the smartphone, I made a homemade signal generator that produces sine square triangle sawtooth signals at different frequencies using the aux cable from the audio output. I am showing the amplitude value on the screen using Arduino.

- To use the program, I downloaded to my smartphone, I connect the phone to my circuit with an aux cable and take output from the oscilloscope.
- I fix the smoothness and amplitude of the outputs I get with the pot in my circuit. The frequency output matches the frequency displayed by the smartphone app.
- The values of the output wave on the oscilloscope and on the LCD display match each other. I made observations at different frequencies and waveforms.

- I feed my system with two 9V batteries, and I turn them on and off with the buttons I connect to the ends of these batteries.
- The system turns on when the buttons are pressed at the same time, and shuts down when they are pressed again.
- With the potentiometer I use in the system, I ensure that the shape of the wave is smooth and I can adjust its amplitude.
- * My system can be improved by increasing the quality of the materials used and the output can be made more error-free.

References

https://www.arduino.cc/en/software

M Pos: 0.000s

- Types Of Signal Generators & Applications, Block Diagram
- <u>https://riverglennapts.com/tr/oscillator/639-signal-generator.html</u>
- <u>https://www.nutsvolts.com/magazine/article/seven-common-ways-</u> to-generate-a-sine-wave

Acknowledgements

This project was completed within the context of ELE401-401 Graduation Project courses in Hacettepe University, Faculty of Engineering, Department of **Electrical and Electronics Engineering.**

* By developing this system, amplitude and offset value can be

I thank Prof. Dr. Uğur BAYSAL for his invaluable contributions to my project.

